Code :R7322301

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 COMPUTATIONAL MOLECULAR BIOLOGY

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. Outline the steps in BLAST algorithm.
- 2. Discuss homology identification in biological sequence alignment.
- 3. Describe the process of developing spotted arrays.
- 4. What do you mean by protein function prediction? Explain with a suitable example.
- 5. What is artificial neural network? Discuss the applications of fed forward back propagation method in protein structure prediction.
- 6. (a) Explain the methods of determining phylogenetic relationships among species.
 - (b) What are the strengths and weakness of phenetic classification versus phylogenetic classification (or cladistics)? Define and describe how each proceeds, and explain.
- 7. Comment on the evolution of PDB? What are its classifications?
- 8. How can computational molecular biology help in novel drug design?

Code :R7322301

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 COMPUTATIONAL MOLECULAR BIOLOGY

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. Explain why every genome is different.
- 2. What do you understand by gene regulatory network? Explain with a suitable example.
- 3. Discuss the procedure of microarray data analysis and various software tools used for the purpose.
- 4. Define any one computational method for 3-D protein structure modeling
- 5. What are the difficulties faced from ab- initio protein structure prediction. How can we solve it?
- 6. What are the advantages of phylogenetic analysis?
- 7. Protein structures are more highly conserved than sequences- explain?
- 8. Discuss recent trends in computational drug designing?

3

Code: R7322301

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 COMPUTATIONAL MOLECULAR BIOLOGY

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. (a) Write about the significance of substitution scores and gap penalties in sequence alignment?
 - (b) Explain FASTA database similarity searching program.
- 2. Discuss the current methods for genome sequencing and importance of genome sequence annotation.
- 3. Describe the advantages of clustering techniques in computational molecular biology (microarray data analysis).
- 4. How can you predict protein structure using Ramachandran's plot?
- 5. (a) What do you mean by protein design?
 - (b) What are the goals of protein design?
- 6. Write short notes on:
 - (a) Rooted and un rooted trees.
 - (b) Genes Vs species trees.
- 7. What methods would you use to visually estimate the number of clusters in a gene expression data?
- 8. Trans membrane proteins are important in drug discovery. What are their properties and how can we generate their 3D structures?

Code :R7322301

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 COMPUTATIONAL MOLECULAR BIOLOGY

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. Write shorts notes on:
 - (a) Gapped BLAST
 - (b) Double filtration algorithm.
- 2. What are the different methods used for detecting SNPs and give its applications?
- 3. Discuss the application of microarray technology.
- 4. Comment on the nature of information provided by structure classification of databases.
- 5. What is artificial neural network? Discuss the applications of fed forward back propagation method in protein structure prediction.
- 6. Describe the following:
 - (a) Various tree building methods.
 - (b) Concept of evolutionary trees.
- 7. Protein structures are more highly conserved than sequences- explain.
- 8. Explain the importance of protein designing in the field of drug designing.